KEAM 2024 Question Paper with Answer Key (June 9)

Ahana Bhaduri

Mar 13, 2025

KEAM 2024 Question Paper (June 9) is available for download here. Office of The Commissioner for Entrance Examinations (CEE Kerala) conducted KEAM Engineering exam 2024 in CBT mode on June 9 in afternoon shift from 2 PM to 5 PM. KEAM Engineering 2024 Question Paper consists total of 150 questions carrying 4 mark each with negative marking of 1 for each incorrect answer. KEAM 2024 Question Paper includes Mathematics with 75 questions, Physics with 45 questions and Chemistry with 30 questions to be attempted in total of 180 minutes.

KEAM 2024 Question Paper with Answer Key PDF (June 9)

KEAM 2024 (June 9) Question Paper with Answer Key download iconDownload Check Solution

Question 1:

If the displacement of a body moving on a horizontal surface is 151.25 cm in a time interval of 2.25 s, then the velocity of the body in the correct number of significant figures in cm s\(^{-1}\) is:

  • (A) 6722
  • (B) 67.22
  • (C) 67.222
  • (D) 0.672
  • (E) 67.2
Correct Answer: (E) 67.2
View Solution

Question 2:

The dimensions of the torque is:

  • (A) \( [M L^3 T^{-2}] \)
  • (B) \( [M L^3 T^{-1}] \)
  • (C) \( [M^{-1} L^{-3} T^2] \)
  • (D) \( [M L^2 T^{-2}] \)
  • (E) \( [M^0 T^0] \)
Correct Answer: (D) \( [M L^2 T^{-2}] \)
View Solution

Question 3:

A particle is projected at an angle \( \theta \) with the x axis in the xy plane with a velocity \( \mathbf{v} = 6\hat{i} - 4\hat{j} \). The velocity of the body on reaching the x axis again is:

  • (A) \( 6\hat{i} - 4\hat{j} \)
  • (B) \( 12\hat{i} - 8\hat{j} \)
  • (C) \( 3\hat{i} - 2\hat{j} \)
  • (D) \( 3\hat{i} + 2\hat{j} \)
  • (E) \( 6\hat{i} + 4\hat{j} \)
Correct Answer: (E) \( 6\hat{i} + 4\hat{j} \)
View Solution

Question 4:

The displacement (x) – time (t) graph for the motion of a body is a straight line making an angle 45\(^{\circ}\) with the time axis. Then the body is moving with:

  • (A) uniform velocity
  • (B) uniform acceleration
  • (C) non-uniform acceleration
  • (D) decreasing velocity
  • (E) increasing velocity
Correct Answer: (A) uniform velocity
View Solution

Question 5:

A ball is thrown up vertically at a speed of 6.0 m/s. The maximum height reached by the ball (Take \( g = 10 m/s^2 \)) is:

  • (A) 80 m
  • (B) 100 m
  • (C) 18 m
  • (D) 1.8 m
  • (E) 1 m
Correct Answer: (D) 1.8 m
View Solution

Question 6:

The INCORRECT statement is:

  • (A) Forces in nature always occur between pair of bodies
  • (B) Action and reaction forces are simultaneous forces
  • (C) Coefficient of static friction is greater than the coefficient of kinetic friction
  • (D) Force is always in the direction of motion
  • (E) Centripetal force acts towards the centre of a circle
Correct Answer: (D) Force is always in the direction of motion
View Solution

Question 7:

A bullet of 10 g, moving at 250 m/s, penetrates 5 cm into a tree limb before coming to rest. Assuming uniform force being exerted by the tree limb, the magnitude of the force is:

  • (A) 12.5 N
  • (B) 625 N
  • (C) 62.5 N
  • (D) 125 N
  • (E) 6250 N
Correct Answer: (E) 6250 N
View Solution

Question 8:

A block of mass \( M \) is kept on the floor of a lift at the centre. The acceleration with which the lift should descend so that the block exerts a force of \( \frac{Mg}{4} \) on the floor of the lift is:

  • (A) \( g \)
  • (B) \( \frac{g}{4} \)
  • (C) \( \frac{g}{3} \)
  • (D) \( \frac{2g}{3} \)
  • (E) \( \frac{3g}{4} \)
Correct Answer: (E) \( \frac{3g}{4} \)
View Solution

Question 9:

A particle of mass 40 g executes simple harmonic motion of amplitude 2.0 cm. If the time period of oscillation is \( \frac{\pi}{20} \) s, then the total mechanical energy of the system is:

  • (A) 128 J
  • (B) 128 mJ
  • (C) 12.8 mJ
  • (D) 256 mJ
  • (E) 2.56 mJ
Correct Answer: (C) 12.8 mJ
View Solution

Question 10:

The kinetic energy of a body is increased by 21%. The percentage increase in the magnitude of its linear momentum is:

  • (A) 10%
  • (B) 11%
  • (C) 1%
  • (D) 20%
  • (E) 21%
Correct Answer: (A) 10%
View Solution

Question 11:

A tennis ball of mass 50g thrown vertically up at a speed of 25 m s\(^{-1}\) reaches a maximum height of 25 m. The work done by the resistance forces on the ball is:

  • (A) 12.5 J
  • (B) 50 J
  • (C) 62.5 J
  • (D) 25 J
  • (E) 31.25 J
Correct Answer: (A) 12.5 J
View Solution

Question 12:

The radius of gyration of a circular disc of radius \( R \), rotating about its diameter is:

  • (A) \( R \)
  • (B) \( \frac{R}{2} \)
  • (C) \( \frac{R}{4} \)
  • (D) \( \frac{R}{\sqrt{12}} \)
  • (E) \( \frac{R}{3} \)
Correct Answer: (B) \( \frac{R}{2} \)
View Solution

Question 13:

For a smoothly running analog clock, the angular velocity of its second hand in rad s\(^{-1}\) is:

  • (A) \(\frac{\pi}{1540}\)
  • (B) \(\frac{\pi}{720}\)
  • (C) \(\frac{\pi}{360}\)
  • (D) \(\frac{\pi}{12}\)
  • (E) \(\frac{\pi}{30}\)
Correct Answer: (E) \(\frac{\pi}{30}\)
View Solution

Question 14:

If the acceleration due to gravity on the surface of a planet is 2.5 times that on Earth and radius, 10 times that of the Earth, then the ratio of the escape velocity on the surface of a planet to that on Earth is:

  • (A) 1:1
  • (B) 1:2
  • (C) 2:1
  • (D) 1:5
  • (E) 5:1
Correct Answer: (E) 5:1
View Solution

Question 15:

The time period of revolution of a planet around the sun in an elliptical orbit of semi-major axis \( a \) is \( T \). Then

  • (A) \( T^2 \propto a^2 \)
  • (B) \( T \propto a^3 \)
  • (C) \( T^2 \propto a^3 \)
  • (D) \( T \propto \frac{1}{a^3} \)
  • (E) \( T^2 \propto \frac{1}{a^3} \)
Correct Answer: (C) \( T^2 \propto a^3 \)
View Solution

Question 16:

In an incompressible liquid flow, mass conservation leads to:

  • (A) Equation of continuity
  • (B) Bernoulli's law
  • (C) Stoke's law
  • (D) Torricelli's law
  • (E) Pascal's law
Correct Answer: (A) Equation of continuity
View Solution

Question 17:

The maximum velocity of a fluid in a tube for which the flow remains streamlined is called its:

  • (A) Terminal velocity
  • (B) Critical velocity
  • (C) Turbulent velocity
  • (D) Streamlined velocity
  • (E) Surface velocity
Correct Answer: (B) Critical velocity
View Solution

Question 18:

Coefficient of linear expansion of aluminum is \( 2.5 \times 10^{-5} \, K^{-1} \). Its coefficient of volume expansion in \( K^{-1} \) is:

  • (A) \( 1.25 \times 10^{-5} \)
  • (B) \( 5.0 \times 10^{-5} \)
  • (C) \( 7.5 \times 10^{-5} \)
  • (D) \( 1 \times 10^{-4} \)
  • (E) \( 4.0 \times 10^{-5} \)
Correct Answer: (C) \( 7.5 \times 10^{-5} \)
View Solution

Question 19:

The efficiency of a Carnot engine operating between steam point and ice point is:

  • (A) 100%
  • (B) 50%
  • (C) 77%
  • (D) 27%
  • (E) 11%
Correct Answer: (D) 27%
View Solution

Question 20:

The type of processes represented by the curves X and Y are:


  • (A) Isothermal and Isobaric
  • (B) Isothermal and Adiabatic
  • (C) Isobaric and Isochoric
  • (D) Isochoric and Isobaric
  • (E) Adiabatic and Isothermal
Correct Answer: (B) Isothermal and Adiabatic
View Solution

Question 21:

Two similar metallic rods of the same length \( l \) and area of cross section \( A \) are joined and maintained at temperatures \( T_1 \) and \( T_2 \) (\( T_1 > T_2 \)) at one of their ends as shown in the figure. If their thermal conductivities are \( K \) and \( \frac{K}{2} \) respectively. The temperature at the joining point in the steady state is:


  • (A) \(\frac{T_1 + T_2}{2}\)
  • (B) \(\frac{2(T_1 - T_2)}{3}\)
  • (C) \(\frac{2T_1 + T_2}{3}\)
  • (D) \(\frac{T_1 - T_2}{2}\)
  • (E) \(\frac{3(T_1 - T_2)}{2}\)
Correct Answer: (C) \(\frac{2T_1 + T_2}{3}\)
View Solution

Question 22:

According to the equipartition principle, the energy contributed by each translational degree of freedom and rotational degree of freedom at a temperature \( T \) are respectively (\( k_B = Boltzmann constant \)):

  • (A) \(\frac{1}{2} k_B T, \frac{1}{2} k_B T\)
  • (B) \(k_B T, \frac{1}{2} k_B T\)
  • (C) \(k_B T, k_B T\)
  • (D) \(\frac{1}{2} k_B T, k_B T\)
  • (E) \(\frac{3}{2} k_B T, \frac{1}{2} k_B T\)
Correct Answer: (A) \(\frac{1}{2} k_B T, \frac{1}{2} k_B T\)
View Solution

Question 23:

The kinetic energy of 3 moles of a diatomic gas molecules in a container at a temperature \( T \) is same as that of kinetic energy of \( n \) moles of monoatomic gas molecules in another container at the same temperature \( T \). The value of \( n \) is:

  • (A) 3
  • (B) 4
  • (C) 2.5
  • (D) 5
  • (E) 3.5
Correct Answer: (D) 5
View Solution

Question 24:

A string of length \( L \) is fixed at both ends and vibrates in its fundamental mode. If the speed of waves on the string is \( v \), then the angular wave number of the standing wave is:

  • (A) \(\frac{2}{L}\)
  • (B) \(\frac{\pi}{L}\)
  • (C) \(\frac{2\pi}{L}\)
  • (D) \(\frac{\pi}{L}\)
  • (E) \(\frac{\pi}{2L}\)
Correct Answer: (D) \(\frac{\pi}{L}\)
View Solution

Question 25:

Ratio between the frequencies of the third harmonics in the closed organ pipe and open organ pipe of the same length is:

  • (A) 2:1
  • (B) 1:2
  • (C) 1:4
  • (D) 4:1
  • (E) 1:5
Correct Answer: (B) 1:2
View Solution

Question 26:

A tuning fork vibrating at 300 Hz, initially in air, is then placed in a trough of water. The ratio of the wavelength of the sound waves produced in air to that in water is (Given that the velocity of sound in water and in air at that place are 1500 m/s and 350 m/s respectively):

  • (A) 1:1
  • (B) 37:23
  • (C) 30:7
  • (D) 7:30
  • (E) 23:37
Correct Answer: (D) 7:30
View Solution

Question 27:

The ratio of the magnitudes of electrostatic force between an electron and a proton separated by a distance \( r \) to that between a proton and an alpha particle separated by the same distance \( r \) is:

  • (A) 1:1
  • (B) 1:4
  • (C) 4:1
  • (D) 2:1
  • (E) 1:2
Correct Answer: (E) 1:2
View Solution

Question 28:

The electric field due to an infinitely long thin wire with linear charge density \( \lambda \) at a radial distance \( r \) is proportional to:

  • (A) \(\frac{\lambda^2}{r}\)
  • (B) \(\frac{\lambda}{r}\)
  • (C) \(\frac{\lambda}{r^2}\)
  • (D) \(\frac{\sqrt{\lambda}}{\sqrt{r}}\)
  • (E) \(\frac{\lambda}{\sqrt{r}}\)
Correct Answer: (B) \(\frac{\lambda}{r}\)
View Solution

Question 29:

A spherical metal shell \( A \) of radius \( R_A \) and a solid metal sphere \( B \) of radius \( R_B \) (\( R_B < R_A \)) are kept far apart and each is given charge \( +Q \). If they are connected by a thin metal wire and \( Q_A \) and \( Q_B \) are the charge on \( A \) and \( B \), respectively, then:

  • (A) \( Q_A = Q_B = 0 \)
  • (B) \( Q_A = Q_B = Q \)
  • (C) \( Q_A < Q_B \)
  • (D) \( Q_A = -Q_B \)
  • (E) \( Q_A > Q_B \)
Correct Answer: (E) \( Q_A > Q_B \)
View Solution

Question 30:

If the number of electron-hole pairs per cm\(^3\) of an intrinsic Si wafer at temperature 300 K is \(1.1 \times 10^{10}\) and the mobilities of electrons and holes at 300 K are 1500 and 500 cm\(^2\) per volt, second, respectively, then the conductivity of the Si wafer at this temperature (in \(\mu\)mho cm\(^{-1}\)) is nearly:

  • (A) 352
  • (B) 35.2
  • (C) 3.52
  • (D) 70.4
  • (E) 17.6
Correct Answer: (C) 3.52
View Solution

Question 31:

Magnitude of drift velocity per unit electric field is known as:

  • (A) Displacement current
  • (B) Mobility
  • (C) Electric resistance
  • (D) Electrical conductivity
  • (E) Relaxation time
Correct Answer: (B) Mobility
View Solution

Question 32:

The y-intercept of the graph between the terminal voltage \(V\) with load resistance \(R\) along \(y\) and \(x\) – axis, respectively, of a cell with internal resistance \(r\), as shown, is:


  • (A) \(\varepsilon\)
  • (B) \(-\varepsilon\)
  • (C) \(\frac{\varepsilon}{R}\)
  • (D) \(\varepsilon R\)
  • (E) \(-\varepsilon R\)
Correct Answer: (A) \(\varepsilon\)
View Solution

Question 33:

A charged particle will continue to move in the same direction in a region, where \(E\) - Electric field, \(B\) - Magnetic field:

  • (A) \(E = 0, B = 0\)
  • (B) \(E \neq 0, B \neq 0\)
  • (C) \(E = 0, B \neq 0\)
  • (D) \(E \neq 0, B = 0\)
  • (E) \(E = B \neq 0\)
Correct Answer: (A) \(E = 0, B = 0\)
View Solution

Question 34:

When an \( \alpha \) particle and a proton are projected into a perpendicular uniform magnetic field, they describe circular paths of the same radius. The ratio of their respective velocities is:

  • (A) 1:1
  • (B) 1:4
  • (C) 2:1
  • (D) 1:2
  • (E) 4:1
Correct Answer: (D) 1:2
View Solution

Question 35:

An electric appliance draws 3A current from a 200 V, 50 Hz power supply. The amplitude of the supply voltage is nearly:

  • (A) 140 V
  • (B) 200 V
  • (C) 283 V
  • (D) 67 V
  • (E) 600 V
Correct Answer: (C) 283 V
View Solution

Question 36:

The oscillating magnetic field in a plane electromagnetic wave is given by \(B_y = (8 \times 10^{-6}) \sin[2 \pi \times 10^{11} t + 200 \pi x] \) tesla. Then the wavelength of the electromagnetic wave (in cm) is:

  • (A) 1
  • (B) 2
  • (C) 3
  • (D) 4
  • (E) 5
Correct Answer: (A) 1
View Solution

Question 37:

A path length of 1m in air is equal to a path length of \(x\) m in a medium of refractive index 1.5. Then the value of \(x\) (in meters) is:

  • (A) 1
  • (B) \(\frac{3}{5}\)
  • (C) \(\frac{5}{3}\)
  • (D) \(\frac{2}{3}\)
  • (E) \(\frac{1}{2}\)
Correct Answer: (D) \(\frac{2}{3}\)
View Solution

Question 38:

A parallel beam of light is incident from air at an angle \(\alpha\) on the side PQ of a right-angled triangular prism of refractive index \(\mu = \sqrt{2} \approx 1.414\). The beam of light undergoes total internal reflection in the prism at the face PR when \(\alpha\) has a minimum value of 45\(^{\circ}\). The angle \(\theta\) of the prism is:


  • (A) 15\(^{\circ}\)
  • (B) 30\(^{\circ}\)
  • (C) 45\(^{\circ}\)
  • (D) 60\(^{\circ}\)
  • (E) 90\(^{\circ}\)
Correct Answer: (A) 15\(^{\circ}\)
View Solution

Question 39:

The wavelength of the de Broglie wave (in meter) associated with a particle of mass \(m\) moving with \(\frac{1}{10}\) of the velocity of light is (h = Planck's constant, c = velocity of light):

  • (A) \(\frac{5h}{mc}\)
  • (B) \(\frac{h}{mc}\)
  • (C) \(\frac{10h}{mc}\)
  • (D) \(\frac{2h}{mc}\)
  • (E) \(\frac{4h}{mc}\)
Correct Answer: (C) \(\frac{10h}{mc}\)
View Solution

Question 40:

For a given radioactive material of mean life \(\tau\) and half-life \(t_{1/2}\), the relationship between \(t_{1/2}\) and \(\tau\) is:

  • (A) \( t_{1/2} = \frac{\ln 2}{\tau} \)
  • (B) \( t_{1/2} = \tau \ln 2 \)
  • (C) \( t_{1/2} = \tau \)
  • (D) \( t_{1/2} = 2\tau \)
  • (E) \( t_{1/2} = \frac{\tau}{\ln 2} \)
Correct Answer: (B) \( t_{1/2} = \tau \ln 2 \)
View Solution

Question 41:

The constancy of the binding energy per nucleon in medium-sized nuclei is due to:

  • (A) Short-range nature of nuclear force
  • (B) Attractive nature of nuclear force
  • (C) Saturation nature of nuclear force
  • (D) Charge independent nature of nuclear forces
  • (E) Strongest nature of nuclear forces
Correct Answer: (A) Short-range nature of nuclear force
View Solution

Question 42:

In a radioactive decay, the fraction of the number of atoms left undecayed after time \( t \) is:

  • (A) \( e^{-\lambda t+1} \)
  • (B) \( e^{-\lambda t} \)
  • (C) \( e^{\lambda t} \)
  • (D) \( e^{\lambda t-1} \)
  • (E) \( e^{t+1} \)
Correct Answer: (B) \( e^{-\lambda t} \)
View Solution

Question 43:

In the electron emission process, \( _{Z}^{A}X \rightarrow _{Z+1}^{A}Y + e^{-} + \bar{\nu} \), the particle \( q \) emitted along with the electron is:

  • (A) Neutron
  • (B) Neutrino
  • (C) Antineutrino
  • (D) Proton
  • (E) Positron
Correct Answer: (C) Antineutrino
View Solution

Question 44:

The current flowing from p to n side in a pn junction diode irrespective of biasing is termed:

  • (A) Drift current
  • (B) Diffusion current
  • (C) Net current
  • (D) Displacement current
  • (E) Biasing current
Correct Answer: (B) Diffusion current
View Solution

Question 45:

The energy required by the electron to cross the forbidden band for Germanium is:

  • (A) 0.72 eV
  • (B) 1.1 eV
  • (C) 0.5 eV
  • (D) 1.5 eV
  • (E) 0.65 eV
Correct Answer: (A) 0.72 eV
View Solution

Question 46:

The molarity of sodium hydroxide in the solution prepared by dissolving 6 g in 600 mL of water is (molar mass of NaOH = 40 g mol\(^{-1}\)):

  • (A) 0.5 M
  • (B) 0.4 M
  • (C) 0.25 M
  • (D) 0.1 M
  • (E) 0.2 M
Correct Answer: (C) 0.25 M
View Solution

Question 47:

The volume of ethanol required to prepare 3 L of 0.25 M aqueous solution is (density of ethanol = 0.36 kg L\(^{-1}\), molar mass = 60 g mol\(^{-1}\)):

  • (A) 125 mL
  • (B) 25 mL
  • (C) 75 mL
  • (D) 50 mL
  • (E) 12.5 mL
Correct Answer: (A) 125 mL
View Solution

Question 48:

Which of the following statement is incorrect about Bohr's model of the atom?

  • (A) It fails to account for the finer details of the hydrogen atom spectrum.
  • (B) Unable to explain the splitting of spectral lines in the presence of magnetic field.
  • (C) The angular momentum of the electron is quantised.
  • (D) The ability of atoms to form molecules by chemical bonds.
  • (E) Unable to explain the splitting of spectral lines in the presence of electric field.
Correct Answer: (D) The ability of atoms to form molecules by chemical bonds.
View Solution

Question 49:

The decreasing order of first ionisation enthalpy of the following elements is:

  • (A) \(N > O > C > Be\)
  • (B) \(O > N > C > Be\)
  • (C) \(Be > C > O > N\)
  • (D) \(N > O > Be > C\)
Correct Answer: (A) \(N > O > C > Be\)
View Solution

Question 50:

The hybridisation involved in the metal atom of \([CrF_6]^{3-}\) is:

  • (A) \(d^2sp^3\)
  • (B) \(dsp^2\)
  • (C) \(sp^3\)
  • (D) \(sp^2\)
  • (E) \(sp^3d^2\)
Correct Answer: (A) \(d^2sp^3\)
View Solution

Question 51:

The valence electron MO configuration of \( C_2 \) (atomic number of C = 6) molecule is:

  • (A) \( (\sigma 2s)^3 (\sigma^* 2s)^3 (\pi 2p)^2 \)
  • (B) \( (\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p)^4 \)
  • (C) \( (\sigma 2s)^2 (\sigma^* 2s)^3 (\pi 2p)^3 \)
  • (D) \( (\sigma 2s)^2 (\sigma^* 2s)^4 (\pi 2p)^2 \)
  • (E) \( (\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p)^5 \)
Correct Answer: (B) \( (\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p)^4 \)
View Solution

Question 52:

Which of the following is used as anode in mercury cell?

  • (A) Paste of \( NH_4Cl \) and \( ZnCl_2 \)
  • (B) Manganese dioxide and carbon
  • (C) Paste of \( HgO \) and carbon
  • (D) Paste of KOH and ZnO
  • (E) Zinc-Mercury amalgam
Correct Answer: (E) Zinc-Mercury amalgam
View Solution

Question 53:

Which of the following is true for a reaction that is spontaneous only at high temperature?

  • (A) \( \Delta_r H^\circ < 0, \Delta_r S^\circ > 0, \Delta_r G^\circ < 0 \)
  • (B) \( \Delta_r H^\circ > 0, \Delta_r S^\circ > 0, \Delta_r G^\circ > 0 \)
  • (C) \( \Delta_r H^\circ > 0, \Delta_r S^\circ > 0, \Delta_r G^\circ < 0 \)
  • (D) \( \Delta_r H^\circ > 0, \Delta_r S^\circ < 0, \Delta_r G^\circ < 0 \)
  • (E) \( \Delta_r H^\circ < 0, \Delta_r S^\circ < 0, \Delta_r G^\circ < 0 \)
Correct Answer: (C) \( \Delta_r H^\circ > 0, \Delta_r S^\circ > 0, \Delta_r G^\circ < 0 \)
View Solution

Question 54:

In a process, 600 J of heat is absorbed by a system and 375 J of work is done by the system. The change in internal energy of the process is:

  • (A) 975 J
  • (B) -225 J
  • (C) -975 J
  • (D) 985 J
  • (E) 225 J
Correct Answer: (E) 225 J
View Solution

Question 55:

The value of \( K_c \) for the equilibrium reaction \[ 2 NO_2(g) \rightleftharpoons N_2O_4(g) \]
is \(2 \times 10^{-40} \, mol^{-1} \, dm^3\) at 298 K. If the equilibrium concentration of \(NO_2\) is \(2 \times 10^{-2}\) M, the concentration of \(N_2O_4\) is:

  • (A) \(6 \times 10^{-42} \, M\)
  • (B) \(12 \times 10^{-44} \, M\)
  • (C) \(8 \times 10^{-44} \, M\)
  • (D) \(2 \times 10^{-44} \, M\)
  • (E) \(4 \times 10^{-44} \, M\)
Correct Answer: (C) \(8 \times 10^{-44} \, \text{M}\)
View Solution

Question 56:

The quantity of electricity required to produce 18 g of Al from molten Al\(_2\)O\(_3\) is (Atomic mass of Al = 27):

  • (A) 2F
  • (B) 4F
  • (C) 5F
  • (D) 6F
  • (E) 1.5F
Correct Answer: (A) 2F
View Solution

Question 57:

The average oxidation state of sulphur in the tetrathionate ion is:

  • (A) +3
  • (B) +2.5
  • (C) +5
  • (D) +3.5
  • (E) +1.5
Correct Answer: (B) +2.5
View Solution

Question 58:

The mass percentage of glucose in acetonitrile when 6 g of glucose is dissolved in 294 g of acetonitrile is:

  • (A) 6%
  • (B) 10%
  • (C) 8%
  • (D) 4%
  • (E) 2%
Correct Answer: (E) 2%
View Solution

Question 59:

The rate constant of a first order reaction is \(4.606 \times 10^{-3} \, s^{-1}\). The time taken to reduce 20 g of reactant into 2 g is:

  • (A) 300 s
  • (B) 500 s
  • (C) 150 s
  • (D) 400 s
  • (E) 250 s
Correct Answer: (B) 500 s
View Solution

Question 60:

The rate law for the reaction, A + B → Product, is:
\[ rate = [A][B]^{3/2} \]

The total order of the reaction is:

  • (A) 3
  • (B) 2.5
  • (C) 3.5
  • (D) 1.5
  • (E) 2
Correct Answer: (B) 2.5
View Solution

Question 61:

Which of the following mixture forms azeotrope?

  • (A) Phenol-aniline
  • (B) Nitric acid-water
  • (C) Ethanol-acetone
  • (D) Chloroform-acetone
  • (E) Cs\(_2\)-acetone
Correct Answer: (E) Cs\(_2\)-acetone
View Solution

Question 62:

A coordination compound of cobalt acts as an antipericious anemia factor is:

  • (A) Cyanocobalamine
  • (B) Carboxypeptidase
  • (C) \([Co(NH_3)_6]^{3+}\)
  • (D) Haemoglobin
  • (E) Myoglobin
Correct Answer: (A) Cyanocobalamine
View Solution

Question 63:

The type of d-d transition of the electron occurs in \([Ti(H_2O)_6]^{3+}\) is:

  • (A) \( t_{2g}^2 e_g^1 \rightarrow t_{2g}^3 e_g^0 \)
  • (B) \( t_{2g}^1 e_g^2 \rightarrow t_{2g}^2 e_g^1 \)
  • (C) \( t_{2g}^1 e_g^3 \rightarrow t_{2g}^2 e_g^2 \)
  • (D) \( t_{2g}^1 e_g^2 \rightarrow t_{2g}^2 e_g^0 \)
  • (E) \( t_{2g}^2 e_g^1 \rightarrow t_{2g}^3 e_g^1 \)
Correct Answer: (C) \( t_{2g}^1 e_g^3 \rightarrow t_{2g}^2 e_g^2 \)
View Solution

Question 64:

The increasing order of field strength of ligands in the spectrochemical series is:

  • (A) \( CO < H_2O < Cl^- < I^- \)
  • (B) \( Cl^- < H_2O < CO < I^- \)
  • (C) \( H_2O < CO < F^- < Cl^- \)
  • (D) \( H_2O < F^- < CO \)
  • (E) \( I^- < Cl^- < H_2O < CO \)
Correct Answer: (E) \( \text{I}^- < \text{Cl}^- < \text{H}_2\text{O} < \text{CO} \)
View Solution

Question 65:

The reaction, \( 2I^- + S_2O_8^{2-} \rightarrow I_2 + 2SO_4^{2-} \), is catalysed by:

  • (A) Iron(II)
  • (B) Manganese(VI)
  • (C) Iron(III)
  • (D) Vanadium(V)
  • (E) Cobalt(III)
Correct Answer: (C) Iron(III)
View Solution

Question 66:

Which of the following is used in the treatment of lead poisoning?

  • (A) EDTA
  • (B) DMG
  • (C) Cupron
  • (D) \( \alpha \)-nitroso-\( \beta \)-naphthol
  • (E) Myoglobin
Correct Answer: (A) EDTA
View Solution

Question 67:

The increasing order of acid strength of the following carboxylic acids is:

  • (i) (CH_3)_3C-COOH \quad (ii) (CH_3)_2CH-COOH \quad (iii) CH_3CH_2COOH \]
  • (A) \( (i) < (ii) < (iii) \)
  • (B) \( (i) < (iii) < (ii) \)
  • (C) \( (ii) < (i) < (iii) \)
  • (D) \( (ii) < (iii) < (i) \)
  • (E) \( (iii) < (ii) < (i) \)
Correct Answer: (E) \( (iii) < (ii) < (i) \)
View Solution

Question 68:

The decreasing order of stability of the following carbocations is:

  • (i) (CH_3)_3C^+ \quad (ii) (CH_3)_2C-CH_2^+ \quad (iii) CH_3CH_2-CH_2^+ \]
  • (A) \( (i) > (ii) > (iii) \)
  • (B) \( (ii) > (i) > (iii) \)
  • (C) \( (iii) > (ii) > (i) \)
  • (D) \( (i) > (iii) > (ii) \)
  • (E) \( (i) > (ii) > (iii) \)
Correct Answer: (D) \( (i) > (iii) > (ii) \)
View Solution

Question 69:

The number of unpaired electrons in \([CoF_6]^{3-}\) is:

  • (A) one
  • (B) four
  • (C) zero
  • (D) two
  • (E) three
Correct Answer: (B) four
View Solution

Question 70:

One mole of an alkene on ozonolysis gives a mixture of one mole pentan-3-one and one mole methanal. The alkene is:

  • (A) 3-ethylbut-1-ene
  • (B) 2-methylpent-1-ene
  • (C) 2-ethylbut-1-ene
  • (D) 4-methylpent-1-ene
  • (E) 4-methylpent-2-ene
Correct Answer: (C) 2-ethylbut-1-ene
View Solution

Question 71:

A tertiary alkyl halide (X), C\(_4\)H\(_9\)Br, reacted with alc.KOH to give compound (Y). Compound (Y) reacted with HBr in presence of peroxide to give compound (Z). The compounds (Y) and (Z) are respectively:

  • (A) Propene and tert-butylbromide
  • (B) 2-methyl-1-propene and 1-bromo-2-methylpropane
  • (C) but-1-ene and 2-bromopropane
  • (D) but-2-ene and 2-methylpropane
  • (E) but-2-ene and 3-methylpropane
Correct Answer: (B) 2-methyl-1-propene and 1-bromo-2-methylpropane
View Solution

Question 72:

The major products formed when one mole of \( CH_3CH_2CH(CH_3)CH_2OCH_2CH_3 \) is treated with one mole of HI are:

  • (A) 2-methylbutan-1-ol and iodoethane
  • (B) ethanol and 2-methylidobutane
  • (C) 2-methylbutan-2-ol and iodomethane
  • (D) 2-methylbutan-1-ol and iodomethane
  • (E) 2-methylbutan-1-ol and ethene
Correct Answer: (A) 2-methylbutan-1-ol and iodoethane
View Solution

Question 73:

The reagent used for the conversion of but-2-ene to ethanol is:

  • (A) anhydrous CrO\(_3\)
  • (B) DIBAL-H
  • (C) PCC
  • (D) O\(_3\)/H\(_2\)O-Zn dust
  • (E) anhydrous AlCl\(_3\)
Correct Answer: (D) O\(_3\)/H\(_2\)O-Zn dust
View Solution

Question 74:

Which of the following is used as insect attractant?

  • (A) Propan-1-amine
  • (B) N,N-Dimethylmethanamine
  • (C) Propan-2-amine
  • (D) N,N-dimethylbutan-1-amine
  • (E) Ethanamine
Correct Answer: (B) N,N-Dimethylmethanamine
View Solution

Question 75:

Lactose is composed of:

  • (A) \( \alpha \)-D-glucose and \( \beta \)-D-galactose
  • (B) two units of \( \alpha \)-D-glucose
  • (C) \( \beta \)-D-galactose and \( \alpha \)-D-glucose
  • (D) \( \alpha \)-D-glucose and \( \beta \)-D-fructose
  • (E) two units of \( \beta \)-D-galactose
Correct Answer: (C) \( \beta \)-D-galactose and \( \alpha \)-D-glucose
View Solution

Question 76:

If A and B are two sets, such that A has 20 elements, \( A \cup B \) has 32 elements, and \( A \cap B \) has 10 elements, the number of elements in the set B is:

  • (A) 22
  • (B) 12
  • (C) 32
  • (D) 42
  • (E) 52
Correct Answer: (A) 22
View Solution

Question 77:

Let a relation \( R \) on the set of natural numbers be defined by \( (x, y) \in R \) if and only if \( x^2 - 4xy + 3y^2 = 0 \) for all \( x, y \in \mathbb{N} \). Then the relation is:

  • (A) reflexive
  • (B) symmetric
  • (C) transitive
  • (D) reflexive and symmetric but not transitive
  • (E) an equivalence relation
Correct Answer: (A) reflexive
View Solution

Question 78:

If \( f(x) = \begin{cases} x^2 & for x < 0
5x - 3 & for 0 \leq x \leq 2
x^2 + 1 & for x > 2 \end{cases} \), then the positive value of \( x \) for which \( f(x) = 2 \) is:

  • (A) \( \frac{3}{5} \)
  • (B) \( \frac{1}{2} \)
  • (C) \( \frac{3}{4} \)
  • (D) 1
  • (E) 0
Correct Answer: (D) 1
View Solution

Question 79:

Let \( X \) and \( Y \) be subsets of \( \mathbb{R} \). If \( f : X \rightarrow Y \) given by \( f(x) = -8(x + 5)^2 \) is one-to-one, then the codomain \( Y \) is:

  • (A) \( (-\infty, 0] \)
  • (B) \( (-\infty, -5] \)
  • (C) \( (-\infty, -5) \)
  • (D) \( [0, -\infty) \)
  • (E) \( (-\infty, \infty) \)
Correct Answer: (A) \( (-\infty, 0] \)
View Solution

Question 80:

Let \( z \) be a complex number satisfying \( |z + 16| = 4|z + 1| \). Then:

  • (A) \( |z| = 2 \)
  • (B) \( |z| = 4 \)
  • (C) \( |z| = 8 \)
  • (D) \( |z| = 10 \)
  • (E) \( |z| = 16 \)
Correct Answer: (B) \( |z| = 4 \)
View Solution

Question 81:

If \( 2z = 7 + i\sqrt{3} \), then the value of \( z^2 - 7z + 4 \) is:

  • (A) \( \frac{39}{4} \)
  • (B) \( \frac{39}{4} \)
  • (C) -9
  • (D) 17
  • (E) 9
Correct Answer: (C) -9
View Solution

Question 82:

If \( \left( \frac{1 - i}{1 + i} \right)^{10} = a + ib \), then the values of \( a \) and \( b \) are, respectively:

  • (A) 1 and 0
  • (B) 0 and 1
  • (C) -1 and 0
  • (D) 0 and -1
  • (E) 1 and -1
Correct Answer: (C) -1 and 0
View Solution

Question 83:

If \( z_1 \) and \( z_2 \) are two complex numbers with \( |z_1| = 1 \), then \( \left| \frac{z_1 - z_2}{1 - z_1 \overline{z_2}} \right| \) is equal to:

  • (A) 0
  • (B) \( \frac{1}{4} \)
  • (C) \( \frac{1}{2} \)
  • (D) 1
  • (E) 2
Correct Answer: (D) 1
View Solution

Question 84:

The second term of a G.P. is 4, then the product of the first three terms is:

  • (A) 16
  • (B) 32
  • (C) 48
  • (D) 64
  • (E) 128
Correct Answer: (D) 64
View Solution

Question 85:

The common ratio of a G.P. is \( \frac{1}{2} \). If the product of the first three terms is 64, then the sum of the first 10 terms is:

  • (A) \( \frac{1023}{128} \)
  • (B) \( \frac{1023}{256} \)
  • (C) \( \frac{511}{128} \)
  • (D) \( \frac{511}{256} \)
  • (E) \( \frac{511}{512} \)
Correct Answer: (A) \( \frac{1023}{128} \)
View Solution

Question 86:

The numbers \( a, b, c, d \) are in G.P. with common ratio \( r \). If \( \frac{1}{a^3 + b^3} + \frac{1}{b^3 + c^3} + \frac{1}{c^3 + d^3} \) are also in G.P., then the common ratio is:

  • (A) \( r \)
  • (B) \( r^2 \)
  • (C) \( r^3 \)
  • (D) \( \frac{1}{r^2} \)
  • (E) \( \frac{1}{r^3} \)
Correct Answer: (E) \( \frac{1}{r^3} \)
View Solution

Question 87:

The minimum value of \( f(x) = 7x^4 + 28x^3 + 31 \) is:

  • (A) 12
  • (B) 10
  • (C) 38
  • (D) 76
  • (E) 56
Correct Answer: (B) 10
View Solution

Question 88:

Evaluate \( \binom{10}{1} + \binom{10}{2} + \dots + \binom{10}{10} \):

  • (A) 1023
  • (B) 1024
  • (C) 511
  • (D) 2047
  • (E) 612
Correct Answer: (B) 1024
View Solution

Question 89:

The coefficient of \( x^3 \) in the binomial expansion of \( \left( \frac{1}{\sqrt{x}} - x \right)^6 \) is:

  • (A) 12
  • (B) 15
  • (C) 10
  • (D) 30
  • (E) 20
Correct Answer: (B) 15
View Solution

Question 90:

If \( _nP_r = 480 \) and \( _nC_r = 20 \), then the value of \( r \) is equal to:

  • (A) 2
  • (B) 3
  • (C) 4
  • (D) 5
  • (E) 6
Correct Answer: (C) 4
View Solution

Question 91:

The constant term in the expansion of \( \left( x^3 + \frac{1}{x^2} \right)^{10} \) is:

  • (A) 210
  • (B) 240
  • (C) 140
  • (D) 120
  • (E) 320
Correct Answer: (A) 210
View Solution

Question 92:

If \[ \begin{bmatrix} 3 & 4
5 & x \end{bmatrix} + \begin{bmatrix} 1 & y
0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0
10 & 5 \end{bmatrix}, \]
then the value of \( x - y \) is:

  • (A) 1
  • (B) 3
  • (C) 5
  • (D) 10
  • (E) 20
Correct Answer: (D) 10
View Solution

Question 93:

If \( B = \begin{bmatrix} 1 & \alpha & 3
1 & 3 & 3
2 & 4 & 4 \end{bmatrix} \) is the adjoint of a \( 3 \times 3 \) matrix \( A \) and \( |A| = 4 \), then the value of \( \alpha \) is:

  • (A) 4
  • (B) 7
  • (C) 9
  • (D) 11
  • (E) 13
Correct Answer: (D) 11
View Solution

Question 94:

If the points \( (2, -3), (\lambda, -1) \) and \( (0, 4) \) are collinear, then the value of \( \lambda \) is equal to:

  • (A) 0
  • (B) \( \frac{1}{7} \)
  • (C) \( \frac{3}{10} \)
  • (D) \( \frac{7}{10} \)
  • (E) \( \frac{10}{7} \)
Correct Answer: (E) \( \frac{10}{7} \)
View Solution

Question 95:

The solution set for the inequalities \( -5 \leq \frac{2 - 3x}{4} \leq 9 \) is:

  • (A) \( \left( \frac{-34}{2}, \frac{-22}{3} \right) \)
  • (B) \( \left( \frac{22}{34}, \frac{2}{3} \right) \)
  • (C) \( \left( \frac{-34}{22}, \frac{3}{3} \right) \)
  • (D) \( (-34, -22) \)
  • (E) \( \left( \frac{11}{22}, \frac{3}{3} \right) \)
Correct Answer: } \textbf{Question Cancelled}
View Solution

Question 96:

If the determinant of the matrix \( \begin{bmatrix} |x| & 1 & 2
4 & 1 & x
1 & -1 & 3 \end{bmatrix} \) equals -10, then the values of \( x \) are:

  • (A) -2 and -6
  • (B) 2 and 6
  • (C) 1 and 4
  • (D) -1 and -4
  • (E) 2 and -6
Correct Answer: (E) 2 and -6
View Solution

Question 97:

Let \( A = (a_{ij}) \) be a square matrix of order 3 and let \( M_{ij} \) be the minors of \( a_{ij} \). If \( M_{11} = -40, M_{12} = -10, M_{13} = 35 \), and \( a_{11} = 1, a_{12} = 3, a_{13} = -2 \), then the value of \( |A| \) is equal to:

  • (A) -100
  • (B) -80
  • (C) 0
  • (D) 60
  • (E) 80
Correct Answer: (B) -80
View Solution

Question 98:

If \( \frac{\sec^2 15^\circ - 1}{\sec^2 15^\circ} \) equals:

  • (A) \( \frac{2 - \sqrt{3}}{4} \)
  • (B) \( \frac{2 + \sqrt{3}}{4} \)
  • (C) \( \frac{2 - \sqrt{3}}{2} \)
  • (D) \( \frac{2 + \sqrt{3}}{2} \)
  • (E) \( \frac{1}{4} \)
Correct Answer: (A) \( \frac{2 - \sqrt{3}}{4} \)
View Solution

Question 99:

The value of \( \sin^2 \left( \frac{3\pi}{8} \right) + \sin^2 \left( \frac{7\pi}{8} \right) \) is:

  • (A) \( \frac{1}{2} \)
  • (B) 1
  • (C) 3
  • (D) \( \frac{3}{4} \)
  • (E) \( \frac{1}{4} \)
Correct Answer: (B) 1
View Solution

Question 100:

If \( \sin \theta = \frac{b}{a} \), then \( \frac{\sqrt{a+b}} {\sqrt{a-b}} + \frac{\sqrt{a-b}} {\sqrt{a+b}} \) is equal to:

  • (A) \( \frac{2}{\cos \theta} \)
  • (B) \( \frac{1}{\cos \theta} \)
  • (C) \( \frac{2}{\sqrt{\cos \theta}} \)
  • (D) \( \frac{1}{\cos \theta} \)
  • (E) 1
Correct Answer: (A) \( \frac{2}{\cos \theta} \)
View Solution

Question 101:

The period of \( 2 \sin 4x \cos 4x \) is:

  • (A) \( \frac{2\pi}{3} \)
  • (B) \( \frac{2\pi}{4} \)
  • (C) \( \frac{\pi}{2} \)
  • (D) \( \frac{\pi}{4} \)
  • (E) \( \pi \)
Correct Answer: (D) \( \frac{\pi}{4} \)
View Solution

Question 102:

The domain of the function \( f(x) = \frac{\sin^{-1} \left( x-3 \right)}{\sqrt{9 - x^2}} \) is:

  • (A) \( [1,2] \)
  • (B) \( [2,3] \)
  • (C) \( [2,3) \)
  • (D) \( [1,2) \)
  • (E) \( (1,2) \)
Correct Answer: (C) \( [2,3) \)
View Solution

Question 103:

If \( \alpha = \tan^2 x + \cot^2 x \), where \( x \in \left( 0, \frac{\pi}{2} \right) \), then \( \alpha \) lies in the interval:

  • (A) \( (-\infty, 1) \)
  • (B) \( (1, 2) \)
  • (C) \( (-\infty, 1] \)
  • (D) \( (-\infty, 2) \)
  • (E) \( [2, \infty) \)
Correct Answer: (E) \( [2, \infty) \)
View Solution

Question 104:

The value of \( \tan \left[ \tan^{-1} \left( \frac{3}{4} \right) + \tan^{-1} \left( \frac{2}{3} \right) \right] \) is:

  • (A) \( \frac{17}{6} \)
  • (B) \( \frac{6}{17} \)
  • (C) \( -\frac{17}{6} \)
  • (D) \( -\frac{6}{11} \)
  • (E) 1
Correct Answer: (A) \( \frac{17}{6} \)
View Solution

Question 105:

If \( 3 \sin \theta + 5 \cos \theta = 5 \), then the value of \( 5 \sin \theta - 3 \cos \theta \) is:

  • (A) 0
  • (B) 1
  • (C) 3
  • (D) 5
  • (E) \( \sqrt{10} \)
Correct Answer: (C) 3
View Solution

Question 106:

Evaluate \( \cos \left( \cot^{-1} \left( \frac{7}{24} \right) \right) \):

  • (A) \( \frac{24}{25} \)
  • (B) \( \frac{7}{24} \)
  • (C) \( \frac{7}{27} \)
  • (D) \( \frac{7}{25} \)
  • (E) \( \frac{24}{27} \)
Correct Answer: (D) \( \frac{7}{25} \)
View Solution

Question 107:

If \( \cos \theta = \frac{2 \cos \alpha + 1}{2 + \cos \alpha} \), then \( \tan^2 \left( \frac{\theta}{2} \right) \) is equal to:

  • (A) \( \frac{1}{3} \tan^2 \left( \frac{\alpha}{2} \right) \)
  • (B) \( \frac{1}{2} \tan^2 \left( \frac{\alpha}{2} \right) \)
  • (C) \( \frac{1}{3} \cos^2 \left( \frac{\alpha}{2} \right) \)
  • (D) \( \frac{1}{3} \cot^2 \left( \frac{\alpha}{2} \right) \)
  • (E) \( 3 \cot^2 \left( \frac{\alpha}{2} \right) \)
Correct Answer: (A) \( \frac{1}{3} \tan^2 \left( \frac{\alpha}{2} \right) \)
View Solution

Question 108:

If a vector makes angles \( \frac{\pi}{3}, \frac{\pi}{4} \) and \( \gamma \) with \( \hat{i}, \hat{j} \), and \( \hat{k} \), respectively, where \( \gamma \in \left( \frac{\pi}{2}, \pi \right) \), then the angle \( \gamma \) is:

  • (A) \( \frac{3\pi}{4} \)
  • (B) \( \frac{7\pi}{12} \)
  • (C) \( \frac{11\pi}{12} \)
  • (D) \( \frac{5\pi}{6} \)
  • (E) \( \frac{2\pi}{3} \)
Correct Answer: (E) \( \frac{2\pi}{3} \)
View Solution

Question 109:

Let \( \mathbf{u}, \mathbf{v}, \mathbf{w} \) be vectors such that \( \mathbf{u} + \mathbf{v} + \mathbf{w} = \mathbf{0} \). If \( |\mathbf{u}| = 3 \), \( |\mathbf{v}| = 4 \), and \( |\mathbf{w}| = 5 \), then \( \mathbf{u} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{u} \) is:

  • (A) 47
  • (B) -25
  • (C) 26
  • (D) -47
  • (E) 0
Correct Answer: (B) -25
View Solution

Question 110:

Let \( \vec{a} = \hat{i} - \hat{j} \), \( \vec{b} = \hat{j} - \hat{k} \), and \( \vec{c} = \hat{k} - \hat{i} \), then the value of \( \vec{b} \cdot (\vec{a} + \vec{c}) \) is:

  • (A) 1
  • (B) 0
  • (C) -1
  • (D) 2
  • (E) -2
Correct Answer: (E) -2
View Solution

Question 111:

Let \( \vec{a}, \vec{b}, \vec{c} \) be three vectors with magnitudes 4, 4, and 2, respectively. If \( \vec{a} \) is perpendicular to \( (\vec{b} + \vec{c}) \), \( \vec{b} \) is perpendicular to \( (\vec{c} + \vec{a}) \), and \( \vec{c} \) is perpendicular to \( (\vec{a} + \vec{b}) \), then the value of \( |\vec{a} + \vec{b} + \vec{c}| \) is:

  • (A) 3
  • (B) 6
  • (C) \( \sqrt{6} \)
  • (D) \( \sqrt{6} \)
  • (E) -6
Correct Answer: (B) 6
View Solution

Question 112:

If two vectors \( \vec{a} = \cos \alpha \hat{i} + \sin \alpha \hat{j} + \sin \frac{\alpha}{2} \hat{k} \) and \( \vec{b} = \sin \alpha \hat{i} - \cos \alpha \hat{j} + \cos \frac{\alpha}{2} \hat{k} \) are perpendicular, then the values of \( \alpha \) are:

  • (A) \( 0 \) and \( \frac{\pi}{2} \)
  • (B) \( \frac{\pi}{4} \) and \( \frac{\pi}{2} \)
  • (C) \( 0 \) and \( \pi \)
  • (D) \( \frac{\pi}{2} \) and \( \frac{3\pi}{2} \)
  • (E) \( 0 \) and \( \frac{\pi}{4} \)
Correct Answer: (C) \( 0 \) and \( \pi \)
View Solution

Question 113:

If one end of a diameter of the circle \( x^2 + y^2 - 4x - 6y + 11 = 0 \) is \( (3, 4) \), then the coordinate of the other end of the diameter is:

  • (A) \( (1, 1) \)
  • (B) \( \left( \frac{1}{2}, \frac{1}{2} \right) \)
  • (C) \( (1, 2) \)
  • (D) \( (2, 1) \)
  • (E) \( (2, 2) \)
Correct Answer: (C) \( (1, 2) \)
View Solution

Question 114:

If the focus of a parabola is \( (0, -3) \) and its directrix is \( y = 3 \), then its equation is:

  • (A) \( x^2 = 12y \)
  • (B) \( x^2 = -12y \)
  • (C) \( y^2 = 12x \)
  • (D) \( y^2 = -12x \)
  • (E) \( y^2 = x \)
Correct Answer: (B) \( x^2 = -12y \)
View Solution

Question 115:

The length of the minor axis of the ellipse with foci \( (\pm 2, 0) \) and eccentricity \( \frac{1}{3} \) is:

  • (A) 2
  • (B) 3
  • (C) \( 2\sqrt{2} \)
  • (D) \( 4\sqrt{2} \)
  • (E) \( 8\sqrt{2} \)
Correct Answer: (E) \( 8\sqrt{2} \)
View Solution

Question 116:

The equation of the line passing through the point \( (1, 2) \) and perpendicular to the line \( x + y + 1 = 0 \) is:

  • (A) \( x + y + 1 = 0 \)
  • (B) \( x + y - 1 = 0 \)
  • (C) \( y - x - 1 = 0 \)
  • (D) \( y - x + 2 = 0 \)
  • (E) \( y - x - 2 = 0 \)
Correct Answer: (C) \( y - x - 1 = 0 \)
View Solution

Question 117:

The line \( \frac{x}{5} + \frac{y}{b} = 1 \) passes through the point \( (13, 32) \) and is parallel to the line \( \frac{x}{c} + \frac{y}{3} = 1 \). Then the values of \( b \) and \( c \) are, respectively:

  • (A) \( -20, \frac{-3}{4} \)
  • (B) \( 20, \frac{3}{4} \)
  • (C) \( \frac{3}{4}, 20 \)
  • (D) \( \frac{-3}{4}, 20 \)
  • (E) \( -20, \frac{3}{4} \)
Correct Answer: (A) \( -20, \frac{-3}{4} \)
View Solution

Question 118:

A ray of light passing through the point \( (1, 2) \) is reflected on the \( x \)-axis at a point \( P \) and passes through the point \( (5, 6) \). Then the abscissa of the point \( P \) is:

  • (A) 3
  • (B) \( \frac{5}{2} \)
  • (C) 2
  • (D) 4
  • (E) \( \frac{3}{2} \)
Correct Answer: (C) 2
View Solution

Question 119:

If the straight line \( \frac{x - a}{1} = \frac{y - b}{2} = \frac{z - 3}{-1} \) passes through \( (-1, 3, 2) \), then the values of \( a \) and \( b \) are, respectively:

  • (A) 2, -1
  • (B) 1, 3
  • (C) -1, -3
  • (D) -2, 1
  • (E) -1, 1
Correct Answer: (D) -2, 1
View Solution

Question 120:

The lines \( \frac{x + 3}{-2} = \frac{y}{1} = \frac{z - 4}{3} \) and \( \frac{x - 1}{\mu} = \frac{y - 1}{\mu + 1} = \frac{z}{\mu + 2} \) are perpendicular to each other. Then the value of \( \mu \) is:

  • (A) \( \frac{-5}{3} \)
  • (B) 3
  • (C) 4
  • (D) \( \frac{-1}{4} \)
  • (E) \( \frac{-7}{2} \)
Correct Answer: (E) \( \frac{-7}{2} \)
View Solution

Question 121:

If the straight lines \( \frac{x - 3}{2} = \frac{y - 4}{3} = \frac{z - 6}{-1} \) and \( \frac{x - 2}{a} = \frac{y + 3}{b} = \frac{z + 4}{-1} \) are parallel, then \( a^2 + b^2 \) is:

  • (A) 1
  • (B) 13
  • (C) 24
  • (D) 17
  • (E) 3
Correct Answer: (B) 13
View Solution

Question 122:

The angle between the lines \( \frac{x}{1} = \frac{y}{1} = \frac{z}{1} \) and \( \frac{x}{0} = \frac{y}{1} = \frac{z}{-1} \) is:

  • (A) \( \frac{\pi}{2} \)
  • (B) 0
  • (C) \( \frac{\pi}{4} \)
  • (D) \( \frac{\pi}{3} \)
  • (E) \( \sin^{-1}(\sqrt{2}) \)
Correct Answer: (A) \( \frac{\pi}{2} \)
View Solution

Question 123:

If three distinct numbers are chosen randomly from the first 50 natural numbers, then the probability that all of them are divisible by 2 and 3 is:

  • (A) \( \frac{3}{350} \)
  • (B) 3
  • (C) \( \frac{2}{175} \)
  • (D) \( \frac{1}{175} \)
  • (E) \( \frac{1}{350} \)
Correct Answer: (E) \( \frac{1}{350} \)
View Solution

Question 124:

If \( \frac{1 + 3p}{4}, \frac{1 - p}{3}, \frac{1 - 3p}{2} \) are the probabilities of three mutually exclusive and exhaustive events, then the value of \( p \) is:

  • (A) \( \frac{1}{3} \)
  • (B) \( \frac{12}{13} \)
  • (C) \( \frac{2}{3} \)
  • (D) \( \frac{1}{13} \)
  • (E) \( \frac{2}{13} \)
Correct Answer: (D) \( \frac{1}{13} \)
View Solution

Question 125:

The mean deviation of the numbers 3, 10, 10, 4, 7, 10 and 5 from the mean is:

  • (A) 2
  • (B) 2.5
  • (C) 2.57
  • (D) 3
  • (E) 3.75
Correct Answer: (C) 2.57
View Solution

Question 126:

If \( g(x) = -\sqrt{25 - x^2} \), then \( g'(1) \) is:

  • (A) \( -\sqrt{24} \)
  • (B) \( \sqrt{24} \)
  • (C) \( \frac{1}{24} \)
  • (D) \( \frac{1}{\sqrt{24}} \)
  • (E) \( \frac{-1}{\sqrt{24}} \)
Correct Answer: (D) \( \frac{1}{\sqrt{24}} \)
View Solution

Question 127:

Evaluate \( \lim_{x \to 0} \frac{\sin 2x + \sin 5x}{\sin 4x + \sin 6x} \):

  • (A) \( \frac{2}{5} \)
  • (B) \( \frac{7}{5} \)
  • (C) \( \frac{3}{7} \)
  • (D) \( \frac{7}{10} \)
  • (E) \( \frac{5}{7} \)
Correct Answer: (D) \( \frac{7}{10} \)
View Solution

Question 128:

If \( f(x) = \left\{ \begin{array}{ll} mx + 1, & when x \leq \frac{\pi}{2}
\sin x + n, & when x > \frac{\pi}{2} \end{array} \right. \) is continuous at \( x = \frac{\pi}{2} \), then the values of \( m \) and \( n \) are:

  • (A) \( m = 1, n = 0 \)
  • (B) \( m = 0, n = 1 \)
  • (C) \( n = \frac{m\pi}{2} \)
  • (D) \( m = \frac{n\pi}{2} \)
  • (E) \( m = n = \frac{\pi}{2} \)
Correct Answer: (C) \( n = \frac{m\pi}{2} \)
View Solution

Question 129:

Let \( f(x) = x - \lfloor x \rfloor \), where \( \lfloor \cdot \rfloor \) denotes the greatest integer function and \( x \in (-1, 2) \). The number of points at which the function is not continuous is:

  • (A) 1
  • (B) 2
  • (C) 3
  • (D) 4
  • (E) 0
Correct Answer: (B) 2
View Solution

Question 130:

If \( f(x) = \cos x - \sin x \), and \( x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) \), then \( f' \left( \frac{\pi}{3} \right) \) is equal to:

  • (A) \( \sqrt{3} + 1 \)
  • (B) \( \frac{\sqrt{3} + 1}{4} \)
  • (C) \( \frac{\sqrt{3} + 1}{2} \)
  • (D) \( \frac{\sqrt{3} - 1}{2} \)
  • (E) \( \frac{\sqrt{3} - 1}{4} \)
Correct Answer: (C) \( \frac{\sqrt{3} + 1}{2} \)
View Solution

Question 131:

If \( f(x) = \sin^{-1}(\cos x) \), then \( \frac{d^2 y}{dx^2} \) at \( x = \frac{\pi}{4} \) is:

  • (A) \( -\frac{1}{4} \)
  • (B) \( -1 \)
  • (C) 1
  • (D) \( \frac{1}{2} \)
  • (E) 0
Correct Answer: (E) 0
View Solution

Question 132:

If \( y = \tan^{-1} \left( \frac{\cos x - \sin x}{\cos x + \sin x} \right) \), \( \frac{-\pi}{2} < x < \frac{\pi}{2} \), then \( \frac{dy}{dx} \) is:

  • (A) \( \tan x \)
  • (B) \( \cos x \)
  • (C) \( \sin x \)
  • (D) \( -1 \)
  • (E) 0
Correct Answer: (D) \( -1 \)
View Solution

Question 133:

If \( y = \frac{x^2}{x - 1} \), then \( \frac{dy}{dx} \) at \( x = -1 \) is:

  • (A) \( \frac{1}{4} \)
  • (B) \( -\frac{1}{4} \)
  • (C) 1
  • (D) \( -\frac{1}{2} \)
  • (E) \( \frac{3}{4} \)
Correct Answer: (E) \( \frac{3}{4} \)
View Solution

Question 134:

The function \( f(x) = 2x^3 + 9x^2 + 12x - 1 \) is decreasing in the interval:

  • (A) \( [-\infty, \infty] \)
  • (B) \( (-2, -1) \)
  • (C) \( (-\infty, -2] \)
  • (D) \( [-1, 0] \)
  • (E) \( (-1, 1] \)
Correct Answer: (B) \( (-2, -1) \)
View Solution

Question 135:

The maximum value of \( y = 12 - |x - 12| \) in the range \( -11 \leq x \leq 11 \) is:

  • (A) 12
  • (B) 11
  • (C) 10
  • (D) 9
  • (E) 35
Correct Answer: (B) 11
View Solution

Question 136:

The limit \( \lim_{x \to 10} \frac{x - 10}{\sqrt{x + 6} - 4} \) is equal to:

  • (A) 4
  • (B) 8
  • (C) 10
  • (D) 16
  • (E) 12
Correct Answer: (B) 8
View Solution

Question 137:

The integral \( \int \frac{dx}{1 + e^x} \) is:

  • (A) \( e^x + C \)
  • (B) \( \log|1 + e^x| + C \)
  • (C) \( \log|1 + e^{-x}| + C \)
  • (D) \( \log |1 - e^{-x}| + C \)
  • (E) \( \log |1 - e^x| + C \)
Correct Answer: (B) \( \log|1 + e^x| + C \)
View Solution

Question 138:

Evaluate \( \int x \cos x \, dx \):

  • (A) \( \sin x - x \cos x + C \)
  • (B) \( x \sin x - \cos x + C \)
  • (C) \( \sin x + x \cos x + C \)
  • (D) \( x \sin x + \cos x + C \)
  • (E) \( \sin x + \cos x + C \)
Correct Answer: (D) \( x \sin x + \cos x + C \)
View Solution

Question 139:

Evaluate \( \int x e^{x^2} \, dx \):

  • (A) \( \frac{e^{x^2}}{2} \)
  • (B) \( \frac{e^{1 - e^2}}{2} \)
  • (C) \( \frac{e^{x^2 + 1}}{2} \)
  • (D) \( \frac{e^{x^2 + 1}}{2} \)
  • (E) \( \frac{e^{x^2 - 1}}{2} \)
Correct Answer: (D) \( \frac{e^{x^2 + 1}}{2} \)
View Solution

Question 140:

If \[ \int \frac{dx}{\sqrt{16 - 9x^2}} = A \sin^{-1}(Bx) + C, where C is an arbitrary constant, then A + B = \]

Correct Answer: } \textbf{(5)} \(\frac{1}{4}\)
View Solution

Question 141:

Evaluate \( \int \frac{dx}{x^2 (x^4 + 1)^{3/4}} \):

  • (A) \( -(x^4 + 1)^{\frac{1}{4}} + C \)
  • (B) \( (x^4 + 1)^{\frac{1}{4}} + C \)
  • (C) \( -\frac{(x^4 + 1)^{1/4}}{x^4} + C \)
  • (D) \( \frac{(x^4 + 1)}{x^4} + C \)
  • (E) \( \frac{(x^4 + 1)^{3/4}}{x^4} + C \)
Correct Answer: (C) \( -\frac{(x^4 + 1)^{1/4}}{x^4} + C \)
View Solution

Question 142:

Evaluate \( \int \frac{e^{6 \log x} - e^{5 \log x}}{e^{4 \log x} - e^{3 \log x}} \, dx \):

  • (A) \( e^x + C \)
  • (B) \( \frac{x^2}{2} + C \)
  • (C) \( x + C \)
  • (D) \( \frac{x^3}{3} + C \)
  • (E) \( x e^x + C \)
Correct Answer: (D) \( \frac{x^3}{3} + C \)
View Solution

Question 143:

Evaluate \( \int_0^1 \log \left( \frac{1}{x - 1} \right) \, dx \):

  • (A) \( \frac{1}{4} \)
  • (B) \( \frac{1}{2} \)
  • (C) \( -1 \)
  • (D) \( 3 \)
  • (E) \( 0 \)
Correct Answer: (E) \( 0 \)
View Solution

Question 144:

Evaluate \( \int_{-\pi/2}^{\pi/2} \sin^9 x \cos^2 x \, dx \):

  • (A) \( \frac{2}{3} \)
  • (B) \( 1 \)
  • (C) \( \frac{1}{11} \)
  • (D) \( \frac{7\pi}{6} \)
  • (E) \( 0 \)
Correct Answer: (E) \( 0 \)
View Solution

Question 145:

Find the area bounded by the curves \( y = 2x \) and \( y = x^2 \):

  • (A) \( \frac{2}{3} \)
  • (B) \( \frac{1}{3} \)
  • (C) \( \frac{4}{3} \)
  • (D) \( 3 \)
  • (E) \( 2 \)
Correct Answer: (C) \( \frac{4}{3} \)
View Solution

Question 146:

Find the area of the smaller segment cut-off from the circle \( x^2 + y^2 = 25 \) by \( x = 3 \):

  • (A) \( 75 \cos^{-1}\left( \frac{3}{5} \right) - 12 \)
  • (B) \( 25 \cos^{-1}\left( \frac{3}{5} \right) - 24 \)
  • (C) \( 25 \cos^{-1}\left( \frac{3}{5} \right) - 12 \)
  • (D) \( 25 \cos^{-1}\left( \frac{3}{5} \right) - 6 \)
  • (E) \( 50 \cos^{-1}\left( \frac{3}{5} \right) - 12 \)
Correct Answer: (C) \( 25 \cos^{-1}\left( \frac{3}{5} \right) - 12 \)
View Solution

Question 147:

The differential equation \( \frac{dy}{dx} + x = A \) (where A is constant) represents:

  • (A) A family of circles having centre on the x-axis
  • (B) A family of circles having centre on the y-axis
  • (C) A family of all circles having centre at the origin
  • (D) A family of ellipses
  • (E) A family of hyperbolas
Correct Answer: (A) A family of circles having centre on the x-axis
View Solution

Question 148:

The general solution of \( \frac{dy}{dx} + y = 5 \) is:

  • (A) \( -\log|5 - y| = x + C \)
  • (B) \( -\log|5 - y| = e^x + C \)
  • (C) \( (5 - y)^2 = 2x + C \)
  • (D) \( y = \log|x| + C \)
  • (E) \( \log|x| + C \)
Correct Answer: (A) \( -\log|5 - y| = x + C \)
View Solution

Question 149:

The degree of the differential equation \( (y^m)^2 + (\sin y')^4 + y = 0 \) is:

  • (A) 1
  • (B) 2
  • (C) 3
  • (D) 4
  • (E) Not defined
Correct Answer: (E) Not defined
View Solution

Question 150:

Given the Linear Programming Problem:

Maximize \( z = 11x + 7y \)

subject to the constraints: \( x \leq 3 \), \( y \leq 2 \), \( x, y \geq 0 \).

Then the optimal solution of the problem is:

  • (A) \( (3, 2) \)
  • (B) \( (3, 0) \)
  • (C) \( (0, 2) \)
  • (D) \( (1, 0) \)
  • (E) \( (0, 1) \)
Correct Answer: (A) \( (3, 2) \)
View Solution


*The article might have information for the previous academic years, please refer the official website of the exam.

Comments

No comments to show